Stress Analysis of the Scoliosis Disorder

Document Type : Original Manuscript

Authors

1 Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2 Department of Civil Engineering, Auburn University, Auburn, USA

Abstract

Scoliosis is a spine irregular deviation, which known an idiopathic ailment among children and adolescents. Indeed, applying loads on the human spine and the capacity of the vertebral column should be tretated as random variables. The main gola of this study is to compare the maximum stress caused by weight load of a norm al and scoliosis spinal. To do so, the numerical analyses associated with the inherent random parameters of bones and applied load are performed. Accordingly, the maximum stress for all vertebrae and discs are computed. The maximum stress intensity in the cortical tissue, cancellous tissue and discs was identified. The location of the maximum stresses quantify which vertebrae and discs may get damaged and needed reinforcement and this can provide a model for predicting the location of spinal cord injury.

Keywords


  1. Abe, Y., Abe Y, Ito M, Abumi K, Sudo H, Salmingo R, and Tadano S. (2015), "Scoliosis corrective force estimation from the implanted rod deformation using 3D-FEM analysis" Scoliosis10(2): S2
  2. Adams, M. A. (2015). Intervertebral disc tissues. Mechanical properties of aging soft tissues, Springer: 7-35.
  3. Azari, F., Arjmand N., Shirazi-Adl A., and Rahimi-Moghaddam T. (2018), "A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing" Journal of biomechanics 70: 157-165.
  4. Cheuk, K. Y., et al. (2015). "Evaluating bone strength with finite element analysis for Adolescent idiopathic scoliosis (AIS): a case-control study with HR-pQCT" Scoliosis10(1): O20
  5. Easterby, R. (2012). Anthropometry and biomechanics: theory and application, Springer Science & Business Media.
  6. Ebbesen E. N., Thomsen J. S., Beck‐Nielsen H., Nepper‐Rasmussen H. J., and Mosekilde L. (1999). "Age‐and gender‐related differences in vertebral bone mass, density, and strength." Journal of Bone and Mineral Research 14(8): 1394-1403.
  7. Galante JO. (1967), "Tensile properties of the human lumbar annulus fibrosus" Acta Orthopaedica Scandinavica 38(sup100): 1-91.
  8. Ghasemi, S.H., Lee, J.Y., (2021a), “Reliability-Based Indicator for Post-Earthquake Traffic Flow Capacity of a Highway Bridge”, Structural Safety, Elsevier, Vol. 89, pp. 102039.
  9. Ghasemi, S.H., and Lee, J.Y., (2021b), “Measuring Instantaneous Resilience of a Highway Bridge Subjected to Earthquake Events”, Transportation Research Record: Journal of the Transportation Research Board., doi/10.1177/03611981211009546
  10. Ghasemi S. H. and Nowak A. S. (2016a), “Mean Maximum Values of Non-Normal Distributions for Different Time Periods", International Journal of Reliability and Safety, Vol. 10, No. 2.
  11. Ghasemi S. H and Nowak, A. S. (2016b), “Statistical Parameters of In-A-Lane Multiple Truck Presence and a New Procedure to Analyze the Lifetime of Bridges", Journal of Structural Engineering International, Association for Bridge and Structural Engineering IABSE, Vol. 26, No. 2, pp. 150-159.
  12. Ghasemi S. H. and Nowak A. S. (2017a), “Reliability Index for Non-Normal Distributions of Limit State Functions”. Structural Engineering and Mechanics, Vol. 62, No. 3, pp. 365-372.
  13. Ghasemi S. H. and Nowak A. S. (2017b), “Target Reliability for Bridges with Consideration of Ultimate Limit State”, Engineering Structures, vol. 152, pp. 226-237.
  14. Ghasemi S. H. and Nowak A. S and (2018), “Reliability Analysis of Circular Tunnels with Consideration of the Strength Limit State”. Geomechanics Engineering, Vo. 15, No 3, pp. 879-888.
  15. Ghasemi S. H., Kalantari H., Abdolahikho S., and Nowak A. S, (2019),”Fatigue Reliability Analysis of Medial Tibial Stress Syndrome”, Material Science and Engineering: C, Vo. 99, pp. 387-393.
  16. Gray H. (1918), Anatomy of the Human Body. Philadelphia: Lea & Febiger, https://upload.wikimedia.org/wikipedia/commons/5/54/Gray_111_-_Vertebral_column-coloured.png.
  17. Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjolfsson S., and Viceconti M. (2008), "Mathematical relationships between bone density and mechanical properties: a literature review", Clinical biomechanics 23(2): 135-146.
  18. Iatridis J. (1995), "Mechanical behavior of the human nucleus pulpous in shear" Proceeding of the 41st Annual Meeting of the Orthopaedic Research Society, 1995.
  19. Iatridis JCM, Weidenbaum M., Setton, LA, and Mow, V., (1996). "Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc", Spine, 21(10): 1174-1184.
  20. Kopperdahl D. L. and Keaveny T. M. (1998), "Yield strain behavior of trabecular bone", J Biomech 31(7): 601-608.
  21. Keyak J. H., Lee IY., Skinner H. B. (1994), " Correlations between orthogonal mechanical properties and density of trabecular bone: Use of different densitometric measures", Journal of Biomedical Materials Research 28(11):1329-36
  22. Labelle H., et al. (2013), "Screening for adolescent idiopathic scoliosis: an information statement by the scoliosis research society international task force", Scoliosis 8(1):17.
  23. Larde D., Mathieu D., Frija J., Gaston A., and VasileN. (1982), "Vertebral osteomyelitis: disc hypodensity on CT", AJR Am J Roentgenol. , 139(5): 963-967.
  24. Little J.P,  Izatt MT, Labrom RD, Askin GN, and Adam CJ. (2013), "An FE investigation simulating intra-operative corrective forces applied to correct scoliosis deformity", Scoliosis 8(1): 9.
  25. Mosekilde L., Mosekilde L., and Danieisen C.C., (1987), "Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals", Bone, 8(2): 79-85.
  26. Mow, V. C. and R. Huiskes (2005), "Basic orthopedic biomechanics & mechano-biology", Lippincott Williams & Wilkins.
  27. Nouri, F., Ghasemi, S.H., and J.Y. Lee, (2020), “System Reliability Analysis of Scoliosis Disorder", BMC Musculoskelet Disorder, Springer, Vol. 21(199), pp. 1-12.
  28. Öhman, C., et al. (2011), "Compressive behaviour of child and adult cortical bone", Bone, 49(4): 769-776.
  29. Patel S., Lee J., Hecht G., Holcombe S., Wang S., and Goulet J. (2016), "Normative vertebral Hounsfield unit values and correlation with bone mineral density", Journal of Clinical & Experimental Orthopaedics, 2: 14.
  30. Pollintine P., Tunen M., Luo J. Brown M. D., Dolan P., and Adams M. A. (2010), "Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis", Spine 35(4): 386-394.
  31. Rockoff S. D., E. Sweet and Bleustein J. (1969), "The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae", Calcified Tissue Research 3(1): 163-175.
  32. Safari, M., Ghasemi, S.H., and Taghia, S.A. (2021), “Target Reliability Analysis of Bridge Piers Concerning the Earthquake Extreme Event Limit State”, Journal of Engineering Structures, Vol. 245, pp. 112910.
  33. Salmingo R. A., Tadano S., Fujisaki K., Abe Y., and Ito M. (2013), "Relationship of forces acting on implant rods and degree of scoliosis correction", Clinical Biomechanics 28(2): 122-128.
  34. Salmingo R., Tadano S., Fujisaki K., Abe Y., and Ito M. (2012), "Corrective force analysis for scoliosis from implant rod deformation." Clinical Biomechanics 27(6): 545-550.
  35. Schlösser T. P., et al. (2014), "Three-dimensional characterization of torsion and asymmetry of the intervertebral discs versus vertebral bodies in adolescent idiopathic scoliosis", Spine 39(19): E1159-E1166.
  36. Shi L., et al. (2011), "Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects", Scoliosis 6(1): 11.
  37. Shirazi-Adl A, El-Rich M, Pop DG, Parnianpour M. (2005), "Spinal muscle forces, internal loads and stability in standing under various postures and loads—application of kinematics-based algorithm", European Spine Journal 14(4):381-392.
  38. Skaggs D., Weidenbaum M.., Iatridis JC A. Ratcliffe A., and Mow V. C. (1994), "Regional variation in tensile properties and biochemical composition of the human lumbar annulus fibrosus", Spine 19(12): 1310-1319.
  39. Soltani, M., Ghasemi, S.H, Soltani, A., Lee, J.Y., Nowak, A.S., Jalilkhani, M., (2020), "State-of-the-art reliability analysis of structural drift control corresponding to the critical excitations", Journal of Earthquake Engineering, https://doi.org/10.1080/13632469.2020.1798829.
  40. Stokes I. A. (1989), "Axial rotation component of thoracic scoliosis", Journal of orthopedic research 7(5): 702-708.
  41. Stokes I. A. F. (2007), "Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation", European Spine Journal 16(10): 1621-1628
  42. Wang J.L., Parnianpour M., Shirazi-Adl A., and. Engin A. (2000), "Viscoelastic finite-element analysis of a lumbar motion segment in combined compression and sagittal flexion: Effect of loading rate", Spine, 25(3): 310-318.
  43. Wintermantel E., Emde H., and Loew F., (1985), "Intradiscal collagenase for treatment of lumbar disc herniations", Acta Neurochir (Wien), 78(3-4): 98-104.